Решение по теореме виета онлайн. Теорема виета для квадратных и других уравнений

Франсуа Виет (1540-1603 гг) – математика, создатель знаменитых формул Виета

Теорема Виета нужна для быстрого решения квадратных уравнений (простыми словами).

Если более подробно, то теорема Виета – это сумма корней данного квадратного уравнения равняется второму коэффициенту, который взят с противоположным знаком, а произведение равно свободному члену. Это свойство обладает любым приведённым квадратным уравнением, у которого есть корни.

При помощи теоремы Виета можно легко решать квадратные уравнения путём подбора, поэтому скажем “спасибо” этому математику с мечем в руках за наш счастливый 7 класс.

Доказательство теоремы Виета

Чтобы доказать теорему, можно воспользоваться известными формулами корней, благодаря которым составим сумму и произведение корней квадратного уравнения. Только после этого мы сможем убедиться, что они равны и, соответственно, .

Допустим у нас есть уравнение: . У этого уравнения есть такие корни: и . Докажем, что , .

По формулам корней квадратного уравнения:

1. Найдём сумму корней:

Разберём это уравнение, как оно у нас получилось именно таким:

= .

Шаг 1 . Приводим дроби к общему знаменателю, получается:

= = .

Шаг 2 . У нас получилась дробь, где нужно раскрыть скобки:

Сокращаем дробь на 2 и получаем:

Мы доказали соотношение для суммы корней квадратного уравнения по теореме Виета.

2. Найдём произведение корней:

= = = = = .

Докажем это уравнение:

Шаг 1 . Есть правило умножение дробей, по которому мы и умножаем данное уравнение:

Теперь вспоминаем определение квадратного корня и считаем:

= .

Шаг 3 . Вспоминаем дискриминант квадратного уравнения: . Поэтому в последнюю дробь вместо D (дискриминанта) мы подставляем , тогда получается:

= .

Шаг 4 . Раскрываем скобки и приводим подобные слагаемые к дроби:

Шаг 5 . Сокращаем «4a» и получаем .

Вот мы и доказали соотношение для произведения корней по теореме Виета.

ВАЖНО! Если дискриминант равняется нулю, тогда у квадратного уравнения всего один корень.

Теорема, обратная теореме Виета

По теореме, обратной теореме Виета можно проверять, правильно ли решено наше уравнение. Чтобы понять саму теорему, нужно более подробно её рассмотреть.

Если числа и такие:

И , тогда они и есть корнями квадратного уравнения .

Доказательство обратной теоремы Виета

Шаг 1. Подставим в уравнение выражения для его коэффициентов:

Шаг 2. Преобразуем левую часть уравнения:

Шаг 3 . Найдём Корни уравнения , а для этого используем свойство о равенстве произведения нулю:

Или . Откуда и получается: или .

Примеры с решениями по теореме Виета

Пример 1

Задание

Найдите сумму, произведение и сумму квадратов корней квадратного уравнения , не находя корней уравнения.

Решение

Шаг 1 . Вспомним формулу дискриминанта . Подставляем наши цифры под буквы. То есть, , – это заменяет , а . Отсюда следует:

Получается:

Title="Rendered by QuickLaTeX.com" height="13" width="170" style="vertical-align: -1px;">. Если дискриминант больше нуля, тогда у уравнения есть корни. По теореме Виета их сумма , а произведение .

Выразим сумму квадратов корней через их сумму и произведение:

Ответ

7; 12; 25.

Пример 2

Задание

Решите уравнение . При этом не применяйте формулы квадратного уравнения.

Решение

У данного уравнения есть корни, которые по дискриминанту (D) больше нуля. Соответственно, по теореме Виета сумма корней этого уравнения равна 4, а произведение – 5. Сначала определяем делители числа , сумма которых равняется 4. Это числа «5» и «-1». Их произведение равно – 5, а сумма – 4. Значит, по теореме, обратной теореме Виета, они являются корнями данного уравнения.

Ответ

И Пример 4

Задание

Составьте уравнение, каждый корень которого в два раза больше соответствующего корня уравнения:

Решение

По теореме Виета сумма корней данного уравнения равна 12, а произведение = 7. Значит, два корня положительны.

Сумма корней нового уравнения будет равна:

А произведение .

По теореме, обратной теореме Виета, новое уравнение имеет вид:

Ответ

Получилось уравнение, каждый корень которого в два раза больше:

Итак, мы рассмотрели, как решать уравнение при помощи теоремы Виета. Очень удобно пользоваться данной теоремой, если решаются задания, которые связаны со знаками корней квадратных уравнений. То есть, если в формуле свободный член – число положительное, и если в квадратном уравнении имеются действительные корни, тогда они оба могут быть либо отрицательными, либо положительными.

А если свободный член – отрицательное число, и если в квадратном уравнении есть действительные корни, тогда оба знака будут разными. То есть, если один корень положительный, тогда другой корень будет только отрицательный.

Полезные источники:

  1. Дорофеев Г. В., Суворова С. Б., Бунимович Е. А. Алгебра 8 класс: Москва “Просвещение”, 2016 – 318 с.
  2. Рубин А. Г., Чулков П. В. – учебник Алгебра 8 класс:Москва “Баласс”, 2015 – 237 с.
  3. Никольский С. М., Потопав М. К., Решетников Н. Н., Шевкин А. В. – Алгебра 8 класс: Москва “Просвещение”, 2014 – 300

Теорема Виета, обратная формула Виета и примеры с решением для чайников обновлено: 22 ноября, 2019 автором: Научные Статьи.Ру

В этой лекции мы познакомимся с любопытными соотношениями между корнями квадратного уравнения и его коэффициентами. Эти соотношения впервые обнаружил французский математик Франсуа Виет (1540—1603).

Например, для уравнения Зx 2 - 8x - 6 = 0, не находя его корней, можно, воспользовавшись теоремой Виета, сразу сказать, что сумма корней равна , а произведение корней равно
т. е. - 2. А для уравнения х 2 - 6х + 8 = 0 заключаем: сумма корней равна 6, произведение корней равно 8; между прочим, здесь нетрудно догадаться, чему равны корни: 4 и 2.
Доказательство теоремы Виета. Корни х 1 и х 2 квадратного уравнения ах 2 + bх + с = 0 находятся по формулам

Где D = b 2 — 4ас — дискриминант уравнения. Сложив эти корни,
получим


Теперь вычислим произведение корней х 1 и х 2 Имеем

Второе соотношение доказано:
Замечание. Теорема Виета справедлива и в том случае, когда квадратное уравнение имеет один корень (т. е. когда D = 0), просто в этом случае считают, что уравнение имеет два одинаковых корня, к которым и применяют указанные выше соотношения.
Особенно простой вид принимают доказанные соотношения для приведенного квадратного уравнения х 2 + рх + q = 0. В этом случае получаем:

x 1 = x 2 = -p, x 1 x 2 =q
т.е. сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.
С помощью теоремы Виета можно получить и другие соотношения между корнями и коэффициентами квадратного уравнения. Пусть, например, х 1 и х 2 — корни приведенного квадратного уравнения х 2 + рх + q = 0. Тогда

Однако основное назначение теоремы Виета не в том, что она выражает некоторые соотношения между корнями и коэффициентами квадратного уравнения. Гораздо важнее то, что с помощью теоремы Виета выводится формула разложения квадратного трехчлена на множители, без которой мы в дальнейшем не обойдемся.


Доказательство. Имеем


Пример 1 . Разложить на множители квадратный трехчлен Зх 2 - 10x + 3.
Решение. Решив уравнение Зх 2 - 10x + 3 = 0, найдем корни квадратного трехчлена Зх 2 - 10x + 3: х 1 = 3, х2 = .
Воспользовавшись теоремой 2, получим

Есть смысл вместо написать Зx - 1. Тогда окончательно получим Зх 2 - 10x + 3 = (х - 3)(3х - 1).
Заметим, что заданный квадратный трехчлен можно разложить на множители и без применения теоремы 2, использовав способ группировки:

Зх 2 - 10x + 3 = Зх 2 - 9х - х + 3 =
= Зх (х - 3) - (х - 3) = (х - 3) (Зx - 1).

Но, как видите, при этом способе успех зависит от того, сумеем ли мы найти удачную группировку или нет, тогда как при первом способе успех гарантирован.
Пример 1 . Сократить дробь

Решение. Из уравнения 2х 2 + 5х + 2 = 0 находим х 1 = - 2,


Из уравнения х2 - 4х - 12 = 0 находим х 1 = 6, х 2 = -2. Поэтому
х 2 - 4х - 12 = (х- 6) (х - (- 2)) = (х - 6) (х + 2).
А теперь сократим заданную дробь:

Пример 3 . Разложить на множители выражения:
а)x4 + 5x 2 +6; б)2x+-3
Р е ш е н и е. а) Введем новую переменную у = х 2 . Это позволит переписать заданное выражение в виде квадратного трехчлена относительно переменной у, а именно в виде у 2 + bу + 6.
Решив уравнение у 2 + bу + 6 = 0, найдем корни квадратного трехчлена у 2 + 5у + 6: у 1 = - 2, у 2 = -3. Теперь воспользуемся теоремой 2; получим

у 2 + 5у + 6 = (у + 2) (у + 3).
Осталось вспомнить, что у = x 2 , т. е. вернуться к заданному выражению. Итак,
x 4 + 5х 2 + 6 = (х 2 + 2)(х 2 + 3).
б) Введем новую переменную у = . Это позволит переписать заданное выражение в виде квадратного трехчлена относительно переменной у, а именно в виде 2у 2 + у - 3. Решив уравнение
2у 2 + у - 3 = 0, найдем корни квадратного трехчлена 2у 2 + у - 3:
y 1 = 1, y 2 = . Далее, используя теорему 2, получим:

Осталось вспомнить, что у = , т. е. вернуться к заданному выражению. Итак,

В заключение параграфа — некоторые рассуждения, опятьтаки связанные с теоремой Виета, а точнее, с обратным утверждением:
если числа х 1 , х 2 таковы, что х 1 + х 2 = - р, x 1 x 2 = q, то эти числа — корни уравнения
С помощью этого утверждения можно решать многие квадратные уравнения устно, не пользуясь громоздкими формулами корней, а также составлять квадратные уравнения с заданными корнями. Приведем примеры.

1) х 2 - 11х + 24 = 0. Здесь x 1 + х 2 = 11, х 1 х 2 = 24. Нетрудно догадаться, что х 1 = 8, х 2 = 3.

2) х 2 + 11х + 30 = 0. Здесь x 1 + х 2 = -11, х 1 х 2 = 30. Нетрудно догадаться, что х 1 = -5, х 2 = -6.
Обратите внимание: если свободный член уравнения — положительное число, то оба корня либо положительны, либо отрицательны; это важно учитывать при подборе корней.

3) х 2 + х - 12 = 0. Здесь x 1 + х 2 = -1, х 1 х 2 = -12. Легко догадаться, что х 1 = 3, х2 = -4.
Обратите внимание: если свободный член уравнения — отрицательное число, то корни различны по знаку; это важно учитывать при подборе корней.

4) 5х 2 + 17x - 22 = 0. Нетрудно заметить, что х = 1 удовлетворяет уравнению, т.е. х 1 = 1 — корень уравнения. Так как х 1 х 2 = -, а х 1 = 1, то получаем, что х 2 = - .

5) х 2 - 293x + 2830 = 0. Здесь х 1 + х 2 = 293, х 1 х 2 = 2830. Если обратить внимание на то, что 2830 = 283 . 10, а 293 = 283 + 10, то становится ясно, что х 1 = 283, х 2 = 10 (а теперь представьте, какие вычисления пришлось бы выполнить для решения этого квадратного уравнения с помощью стандартных формул).

6) Составим квадратное уравнение так, чтобы его корнями служили числа х 1 = 8, х 2 = - 4. Обычно в таких случаях составляют приведенное квадратное уравнение х 2 + рх + q = 0.
Имеем х 1 + х 2 = -р, поэтому 8 - 4 = -р, т. е. р = -4. Далее, х 1 х 2 = q, т.е. 8«(-4) = q, откуда получаем q = -32. Итак, р = -4, q = -32, значит, искомое квадратное уравнение имеет вид х 2 -4х-32 = 0.

Формулировка и доказательство теоремы Виета для квадратных уравнений. Обратная теорема Виета. Теорема Виета для кубических уравнений и уравнений произвольного порядка.

Содержание

См. также: Корни квадратного уравнения

Квадратные уравнения

Теорема Виета

Пусть и обозначают корни приведенного квадратного уравнения
(1) .
Тогда сумма корней равна коэффициенту при , взятому с обратным знаком. Произведение корней равно свободному члену:
;
.

Замечание по поводу кратных корней

Если дискриминант уравнения (1) равен нулю, то это уравнение имеет один корень. Но, чтобы избежать громоздких формулировок, принято считать, что в этом случае, уравнение (1) имеет два кратных, или равных, корня:
.

Доказательство первое

Найдем корни уравнения (1). Для этого применим формулу для корней квадратного уравнения :
;
;
.

Находим сумму корней:
.

Чтобы найти произведение, применим формулу:
.
Тогда

.

Теорема доказана.

Доказательство второе

Если числа и являются корнями квадратного уравнения (1), то
.
Раскрываем скобки.

.
Таким образом, уравнение (1) примет вид:
.
Сравнивая с (1) находим:
;
.

Теорема доказана.

Обратная теорема Виета

Пусть и есть произвольные числа. Тогда и являются корнями квадратного уравнения
,
где
(2) ;
(3) .

Доказательство обратной теоремы Виета

Рассмотрим квадратное уравнение
(1) .
Нам нужно доказать, что если и , то и являются корнями уравнения (1).

Подставим (2) и (3) в (1):
.
Группируем члены левой части уравнения:
;
;
(4) .

Подставим в (4) :
;
.

Подставим в (4) :
;
.
Уравнение выполняется. То есть число является корнем уравнения (1).

Теорема доказана.

Теорема Виета для полного квадратного уравнения

Теперь рассмотрим полное квадратное уравнение
(5) ,
где , и есть некоторые числа. Причем .

Разделим уравнение (5) на :
.
То есть мы получили приведенное уравнение
,
где ; .

Тогда теорема Виета для полного квадратного уравнения имеет следующий вид.

Пусть и обозначают корни полного квадратного уравнения
.
Тогда сумма и произведение корней определяются по формулам:
;
.

Теорема Виета для кубического уравнения

Аналогичным образом мы можем установить связи между корнями кубического уравнения. Рассмотрим кубическое уравнение
(6) ,
где , , , есть некоторые числа. Причем .
Разделим это уравнение на :
(7) ,
где , , .
Пусть , , есть корни уравнения (7) (и уравнения (6)). Тогда

.

Сравнивая с уравнением (7) находим:
;
;
.

Теорема Виета для уравнения n-й степени

Тем же способом можно найти связи между корнями , , ... , , для уравнения n-й степени
.

Теорема Виета для уравнения n-й степени имеет следующий вид:
;
;
;

.

Чтобы получить эти формулы мы записываем уравнение в следующем виде:
.
Затем приравниваем коэффициенты при , , , ... , и сравниваем свободный член.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
С.М. Никольский, М.К. Потапов и др., Алгебра: учебник для 8 класса общеобразовательных учреждений, Москва, Просвещение, 2006.

См. также:

Практически любое квадратное уравнение \можно преобразовать к виду \ Однако это возможно, если изначально разделить каждое слагаемое на коэффициент \ перед \ Кроме того, можно ввести новое обозначение:

\[(\frac {b}{a})= p\] и \[(\frac {c}{a}) = q\]

Благодаря чему будем иметь уравнение \ именуемое в математике приведенным квадратным уравнением. Корни данного уравнения и коэффициенты \ взаимосвязаны между собой, что подтверждено теоремой Виета.

Теорема Виета: Сумма корней приведенного квадратного уравнения \ равна второму коэффициенту \ взятому с противоположным знаком, а произведение корней - свободному члену \

Для наглядности решим уравнение следующего вида:

Решим данное квадратное уравнение с помощью выписанных правил. Проанализировав исходные данные, можно сделать вывод, что уравнение будет иметь два различных корня, поскольку:

Теперь из всех множителей числа 15 (1 и 15, 3 и 5) выбираем те, разность которых равна 2. Под это условие попадают числа 3 и 5. Перед меньшим числом ставим знак "минус". Таким образом, получим корни уравнения \

Ответ: \[ x_1= -3 и x_2 = 5\]

Где можно решить уравнение по теореме Виета онлайн?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

В восьмом классе, учащиеся знакомятся с квадратными уравнениями и способами их решения. При этом, как показывает опыт, большинство учащихся при решении полных квадратных уравнений применяют только один способ – формулу корней квадратного уравнения. Для учеников, хорошо владеющих навыками устного счета, этот способ явно нерационален. Решать квадратные уравнения учащимся приходится часто и в старших классах, а там тратить время на расчет дискриминанта просто жалко. На мой взгляд, при изучении квадратных уравнений, следует уделить больше времени и внимания применению теоремы Виета (по программе А.Г. Мордковича Алгебра-8, на изучение темы “Теорема Виета. Разложение квадратного трехчлена на линейные множители” запланировано только два часа).

В большинстве учебников алгебры эта теорема формулируется для приведенного квадратного уравнения и гласит, что если уравнение имеет корни и , то для них выполняются равенства , . Затем формулируется утверждение, обратное к теореме Виета, и предлагается ряд примеров для отработки этой темы.

Возьмем конкретные примеры и проследим на них логику решения с помощью теоремы Виета.

Пример 1. Решить уравнение .

Допустим, это уравнение имеет корни, а именно, и . Тогда по теореме Виета одновременно должны выполняться равенства

Обратим внимание, что произведение корней – положительное число. А значит, корни уравнения одного знака. А так как сумма корней также является положительным числом, делаем вывод, что оба корня уравнения – положительные. Вернемся снова к произведению корней. Допустим, что корни уравнения – целые положительные числа. Тогда получить верное первое равенство можно только двумя способами (с точностью до порядка множителей): или . Проверим для предложенных пар чисел выполнимость второго утверждения теоремы Виета: . Таким образом, числа 2 и 3 удовлетворяют обоим равенствам, а значит, и являются корнями заданного уравнения.

Ответ: 2; 3.

Выделим основные этапы рассуждений при решении приведенного квадратного уравнения с помощью теоремы Виета:

записать утверждение теоремы Виета (*)
  • определить знаки корней уравнения (Если произведение и сумма корней – положительные, то оба корня – положительные числа. Если произведение корней – положительное число, а сумма корней – отрицательное, то оба корня – отрицательные числа. Если произведение корней – отрицательное число, то корни имеют разные знаки. При этом, если сумма корней – положительная, то больший по модулю корень является положительным числом, а если сумма корней меньше нуля, то больший по модулю корень – отрицательное число);
  • подобрать пары целых чисел, произведение которых дает верное первое равенство в записи (*);
  • из найденных пар чисел выбрать ту пару, которая при подстановке во второе равенство в записи (*) даст верное равенство;
  • указать в ответе найденные корни уравнения.

Приведем еще примеры.

Пример 2. Решите уравнение .

Решение.

Пусть и - корни заданного уравнения. Тогда по теореме Виета Заметим, что произведение – положительное, а сумма – отрицательное число. Значит, оба корня – отрицательные числа. Подбираем пары множителей, дающих произведение 10 (-1 и -10; -2 и -5). Вторая пара чисел в сумме дает -7. Значит, числа -2 и -5 являются корнями данного уравнения.

Ответ: -2; -5.

Пример 3. Решите уравнение .

Решение.

Пусть и - корни заданного уравнения. Тогда по теореме Виета Заметим, что произведение – отрицательное. Значит, корни – разного знака. Сумма корней – также отрицательное число. Значит, больший по модулю корень – отрицательный. Подбираем пары множителей, дающих произведение -10 (1 и -10; 2 и -5). Вторая пара чисел в сумме дает -3. Значит, числа 2 и -5 являются корнями данного уравнения.

Ответ: 2; -5.

Заметим, что теорему Виета в принципе можно сформулировать и для полного квадратного уравнения: если квадратное уравнение имеет корни и , то для них выполняются равенства , . Однако применение этой теоремы довольно проблематично, так как в полном квадратном уравнении по крайней мере один из корней (при их наличии, конечно) является дробным числом. А работать с подбором дробей долго и трудно. Но все-таки выход есть.

Рассмотрим полное квадратное уравнение . Умножим обе части уравнения на первый коэффициент а и запишем уравнение в виде . Введем новую переменную и получим приведенное квадратное уравнение , корни которого и (при их наличии) могут быть найдены по теореме Виета. Тогда корни исходного уравнения будут . Обратим внимание, что составить вспомогательное приведенное уравнение очень просто: второй коэффициент сохраняется, а третий коэффициент равен произведению ас . При определенном навыке учащиеся сразу составляют вспомогательное уравнение, находят его корни по теореме Виета и указывают корни заданного полного уравнения. Приведем примеры.

Пример 4. Решите уравнение .

Составим вспомогательное уравнение и по теореме Виета найдем его корни . А значит, корни исходного уравнения .

Ответ: .

Пример 5. Решите уравнение .

Вспомогательное уравнение имеет вид . По теореме Виета его корни . Находим корни исходного уравнения .

Ответ: .

И еще один случай, когда применение теоремы Виета позволяет устно найти корни полного квадратного уравнения. Нетрудно доказать, что число 1 является корнем уравнения , тогда и только тогда, когда . Второй корень уравнения находится по теореме Виета и равен . Еще одно утверждение: чтобы число –1 являлось корнем уравнения необходимо и достаточно, чтобы . Тогда второй корень уравнения по теореме Виета равен . Аналогичные утверждения можно сформулировать и для приведенного квадратного уравнения.

Пример 6. Решите уравнение .

Заметим, что сумма коэффициентов уравнения равна нулю. Значит, корни уравнения .

Ответ: .

Пример 7. Решите уравнение .

Для коэффициентов этого уравнения выполняется свойство (действительно, 1-(-999)+(-1000)=0). Значит, корни уравнения .

Ответ: ..

Примеры на применение теоремы Виета

Задание 1. Решите приведенное квадратное уравнение с помощью теоремы Виета.

1. 6. 11. 16.
2. 7. 12. 17.
3. 8. 13. 18.
4. 9. 14. 19.
5. 10. 15. 20.

Задание 2. Решите полное квадратное уравнение с помощью перехода к вспомогательному приведенному квадратному уравнению.

1. 6. 11. 16.
2. 7. 12. 17.
3. 8. 13. 18.
4. 9. 14. 19.
5. 10. 15. 20.

Задание 3. Решите квадратное уравнение с помощью свойства .

© 2024 staren.ru
Портал о ремонте